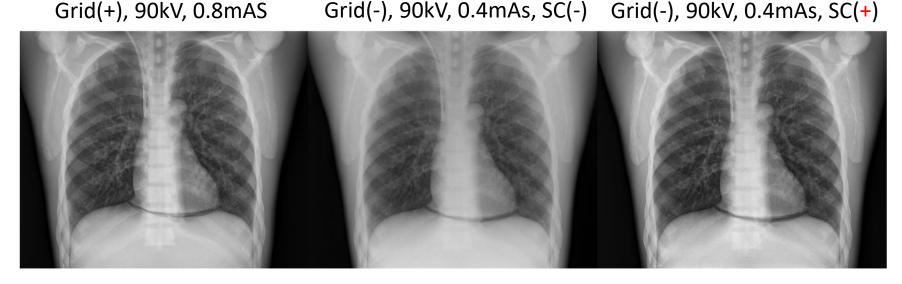
Visual Evaluation of Scatter Correction Using Clinical Images

Keisuke Kashima, Sakiko Himeji, Koji Oogari,
 Kohei Yamaoka, Ryu Mabuchi, Kyoji Higashimura

Division of Clinical Radiology Service, Kyoto University Hospital


Disclosure of conflict of interest

We have nothing to declare for this study.

The 73rd Annual Meeting of the JSRT Japanese Society of Radiological Technology

Background

A software-based scatter correction (SC) method has been developed that is designed to restore image contrast of non-grid images in a manner comparable with an anti-scatter grid.

Radiat. Prot. Dosim. 2016, 169: 60-67

Background

Several works evaluate the physical characteristics of SC with phantom study. ECR 2015, DOI: 10.1594/ecr2015/C-1834

SC offers an alternative to the usage of an grid for bedside chest radiography in terms of contrast improvement. *Radiat. Prot. Dosim. 2016, 169: 308-312*

Even though image quality of SC chest X-ray does not fully reach the level of grid(+) images, SC have potential of the significant reduction of ~50 % in patient dose.

Radiat. Prot. Dosim. 2016, 169: 60-67

ECR 2016, DOI: 10.1594/ecr2016/C-0416

Purpose

To investigate the utility of scatter correction applied to clinical images especially infant chest and adult knee joint using visual evaluation

Materials

X-ray systems

RADspeed Pro (SHIMADZU)

X'sy Pro (SHIMADZU)

Flat panel detector

CXDI-701C, 801C Wireless (CANON)

Image processing software

CXDI Control Software NE Ver. 2.15 (CANON)

Monitor

RadiForce GS521 (EIZO)

Image acquisition | Infant chest

Patients

30 infants (mean: 2.3 yo, range: 0-5 yo)

X-ray exposure parameters

kVp	55 - 65		
mA	250		
mAs	1.25 - 3.50		
SID (cm)	120 - 200		

Scatter correction factor

without and '1' (max= 10)

Image acquisition | Adult knee joint

Patients

30 (Right: 14, Left: 16)

X-ray exposure parameters

kVp	55 - 58		
mA	125		
mAs	4.0 - 5.0		
SID (cm)	120		

Scatter correction factor

without and '1' (max= 10)

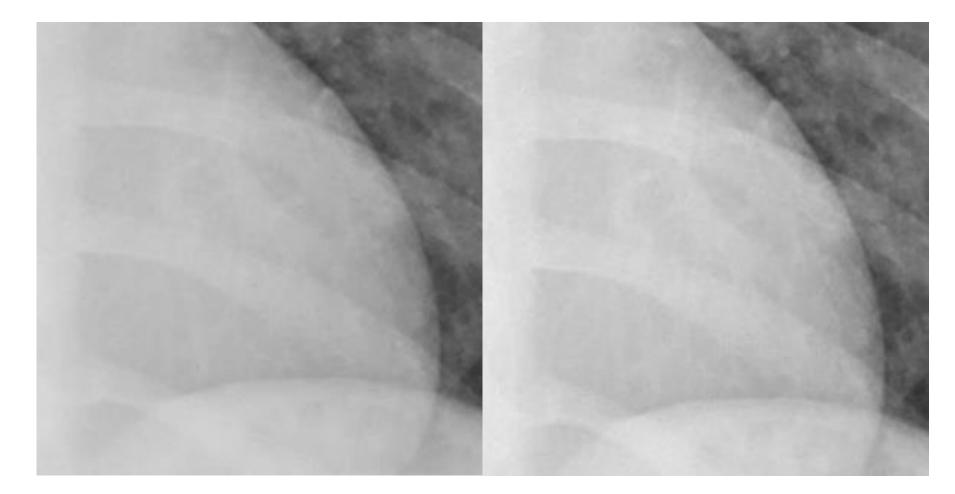
Visual Evaluation

Six radiological technologists subjectively assessed the image quality with SC compared to w/o SC as following grades.

- **-2** Bad
- -1 Somewhat bad
- **0** Equivalent
- **1** Slightly good
- **2** Good

Wilcoxon signed rank sum test was performed. *P* value <0.05 was considered statistically significant.

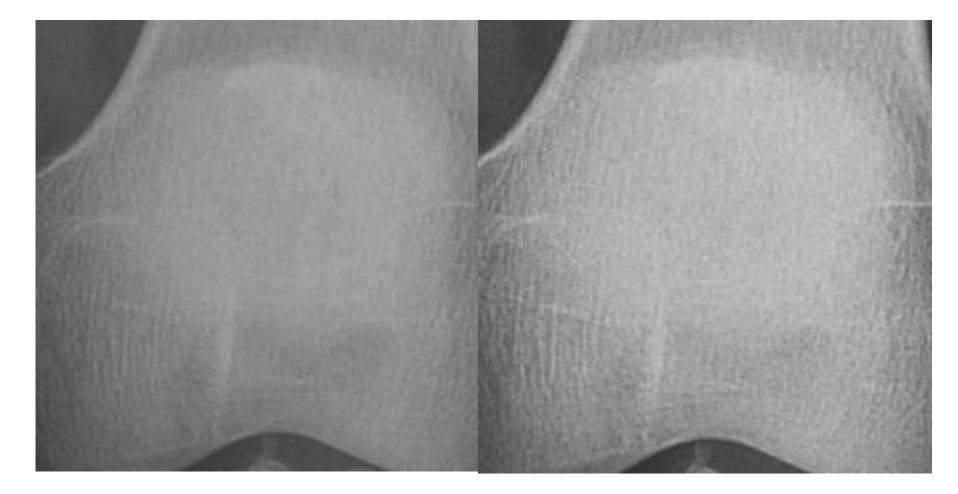
Visual Evaluation | Infant chest


- Mediastinal lines
- Both pulmonary artery markings and bronchus shadow of the hilar region
- Pulmonary markings of retrocardiac area
- Graininess
- Sharpness
- Contrast
- "Impressive" overall image quality

JSRT 1992, 48 (4), 616-624

Visual Evaluation | Adult knee joint

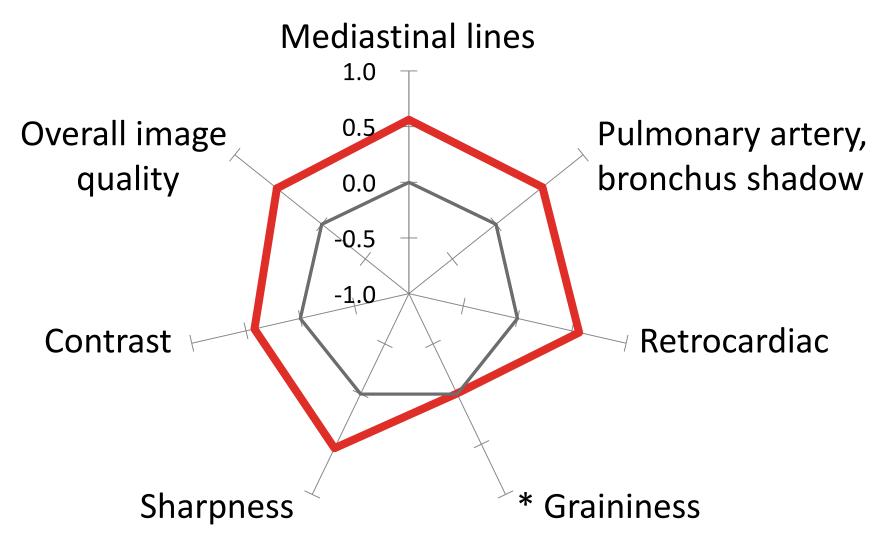
- Sharpness of trabeculae
- Graininess of soft tissue
- Margin of patella
- Contrast
- "Impressive" overall image quality


E.g. | Retrocardiac

Without SC

E.g. | Margin of patella

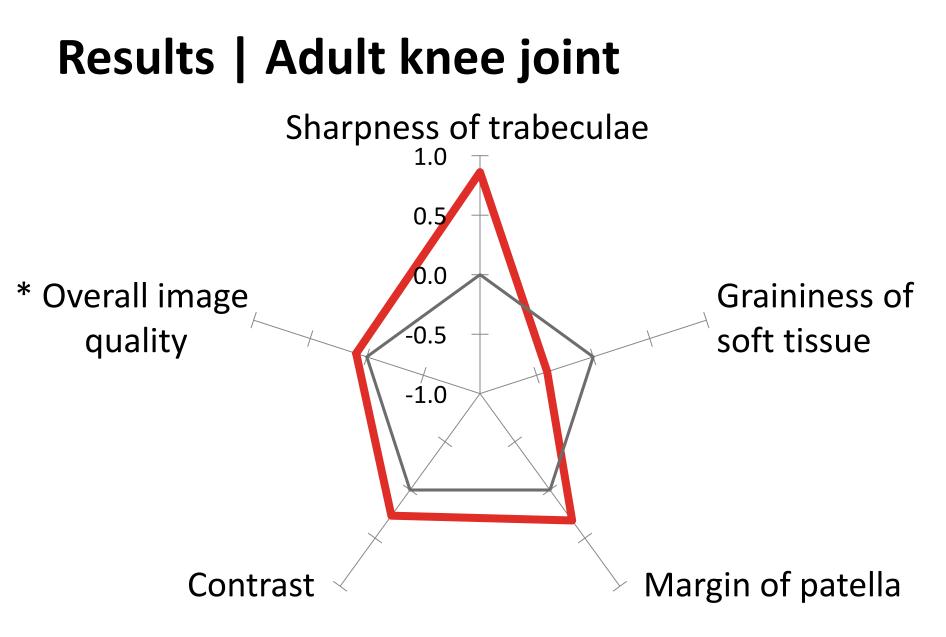
Without SC



Results | Infant chest

Object	Mean (95% CI)	SD	Max	Min
Mediastinal lines	0.56 (0.49–0.63)	0.50	1.00	0.00
Pulmonary artery, bronchus shadow	0.53 (0.46–0.61)	0.52	1.00	-1.00
Retrocardiac	0.57 (0.49–0.64)	0.50	1.00	0.00
Graininess	-0.01 (-0.08–0.06)	0.48	1.00	-1.00
Sharpness	0.54 (0.46–0.61)	0.51	1.00	-1.00
Contrast	0.42 (0.33–0.52)	0.64	2.00	-1.00
Overall image quality	0.52 (0.42–0.61)	0.64	2.00	-1.00

CI = confidence interval; SD = standard deviation


Results | Infant chest

Results | Adult knee joint

Object	Mean (95% CI)	SD	Max	Min
Sharpness of trabeculae	0.86 (0.79–0.93)	0.48	2.00	-1.00
Graininess of soft tissue	-0.41 (-0.50–-0.31)	0.67	1.00	-2.00
Margin of patella	0.32 (0.23–0.41)	0.60	2.00	-1.00
Contrast	0.27 (0.14–0.39)	0.84	2.00	-2.00
Overall image quality	0.11 (-0.22–0.23)	0.86	2.00	-2.00

CI = confidence interval; SD = standard deviation

* : N.S.

Discussion

SC improved image quality even with dose for non-grid X-ray.

- Increased dose is no need.
- SC may be applied to other subject.
 (e.g. infant abdomen and chest-abdomen)
- Image quality improvement is limited because of only applying SC without dose adjustment.

Discussion

Degradation of graininess

- SC led to contrast enhancement, but noise component was not removed.
- Simultaneous use of noise reduction processing is required.
- Balance between SC image quality and noise level should be considered.

Conclusions

- Scatter correction with same dose for non-grid X-rays can improve image quality of infant chest and adult knee joint X-rays.
- Scatter correction is clinically useful.